Code for Dextro.org algorithmic image "H013" written by Walter Gorgosilits (Dextro.org) between 1994 and 2017. For research only. No commercial or secret service/clandestine use. float a = 1024; float b = 768; float m3 = 1; int num1 = 6; int num2 = 50000; int m = 0; int m5 = 0; float fek = 200; float[] xli = new float[num2]; float[] yli = new float[num2]; float[] pxli = {956.07, 630.48, 740.48, 630.16, 298.07, 174.77}; float[] pyli = {618.41, 291.94, 439.44, 282.17, 25.31, 602.23}; float[] d1li = new float[num1]; float x1, y1, x2, y2, ffx, ffy, fff, dx, dy, d1, d2, d3, xx, yy, xxc, yyc, xxp, yyp, xx2, yy2, xx3, yy3, ff, dd, w, V2, V3, ffff; int ble = 5; void setup() {size(890, 1200, P2D); background(0); frameRate(900); smooth(); stroke(255, ble); for (int n = 0; n < num2; n++) {xli[n] = random(a/2)/3 +320; yli[n] = random(b/2)/2 +210;} for (int i = 0; i < num1/2; i++) {x1 = pxli[2*i]; y1 = pyli[2*i]; x2 = pxli[2*i+1]; y2 = pyli[2*i+1]; dx = abs(x1 -x2); dy = abs(y1 -y2); d1li[i] = sqrt(dx*dx +dy*dy);}} void draw() {m = m +1; if (m == 1) {m = 0; m3 = m3 +1; for (int n = 0; n < num2; n++) {xli[n] = random(a/2)/3 +320; yli[n] = random(b/2)/2 +210;}} for (int i = 0; i < num1/2; i++) {x1 = pxli[2*i]; y1 = pyli[2*i]; x2 = pxli[2*i+1]; y2 = pyli[2*i+1]; d1 = d1li[i]; d1 = sin(d1/100.0)*10; for (int n = 0; n < num2; n++) {xx = xli[n]; yy = yli[n]; xxc = xx; yyc = yy; dx = abs(xx -x1); dy = abs(yy -y1); d2 = sqrt(dx*dx +dy*dy); d2 = tan(d2/30)*10; dd = sqrt(dx*dx +dy*dy); if (dx == 0) {dx = 0.001;} if (dy == 0) {dy = 0.001;} if ((dx >= 0) && (dy >= 0)) {w = atan(dy/dx)*(180/PI) +180;} if ((dx < 0) && (dy >= 0)) {w = atan(dy/dx)*(180/PI);} if ((dx < 0) && (dy < 0)) {w = atan(dy/dx)*(180/PI);} if ((dx >= 0) && (dy < 0)) {w = atan(dy/dx)*(180/PI) +180;} V2 = sin(w*PI/3); d2 = d2 +V2*10; V3 = atan(w*PI/9.0); d2 = d2 +V3*10; dx = abs(xx -x2); dy = abs(yy -y2); d3 = sqrt(dx*dx +dy*dy); d3 = tan(d3/100)*10; if (d1 == 0) {d1 = 1;} xx = xx -(xx -x2)/d1; yy = yy -(yy -y2)/d1; fff = d2/10; xxp = xx +cos(d3*PI/10.0)*fff; yyp = yy +sin(d3*PI/10.0)*fff; ff = d2/d3*10; if (ff == 0) {ff = 0.0001;} xx2 = tan(ff/100)*fek; ffff = d2; if (ffff == 0) {ffff = 0.0001;} ff = d3/ffff*10; if (ff == 0) {ff = 0.0001;} yy2 = sin(ff)*fek; xx3 = cos(d3/2)*fek; yy3 = atan(d3/30)*fek; ff = min(xx2, xx3); if (ff == 0) {ff = 0.0001;} xx = xx +(xx -xxp)/ff; ff = max(yy2, yy3); if (ff == 0) {ff = 0.0001;} yy = yy +(yy -yyp)/ff; ff = min(xx2, xx3); if (ff == 0) {ff = 0.0001;} xx = xx +(xx -xxp)/ff; ff = max(yy2, yy3); if (ff == 0) {ff = 0.0001;} yy = yy +(yy -yyp)/ff; if (i == num1/2-1) {ffy = (yy-296)*6 +1000; if ((ffy < 0) || (ffy > 960)) {xx = int(random(a/2)/2.8 +235);} ffy = ffy*1.6; ffx = (xx-573)*6 +1000; if ((ffx < 0) || (ffx > 640)) {yy = random(b/2)/3.2 +60;} ffx = ffx*1.6 +300; point(ffx, ffy);} xli[n] = xx; yli[n] = yy;}}}